
S1 Appendix: Methodology maritime trade estimates

1 Methodology

We briefly describe the methodology to estimate port-level and country-level maritime trade flows
based on empirical vessel tracking data. This methodology builds upon Verschuur et al. (2020), who
used empirical vessel tracking data to derive port calls on a global scale. We make use of a global
database of vessel locations and information that is included in Automatic Identification System (AIS)
messages that maritime vessels send out (nowadays a AIS transponder is mandatory for all vessels
with a capacity of 300 gross tonnage or more). This data is made available to us through the United
Nations Global Working Group on Big Data for Official Statistics. For more information on this data,
reference is made to Verschuur et al. (2020). AIS data includes the geospatial location of vessels,
including a number of vessel attributes (e.g. length, draft, type, subtype, speed, direction, etc.), every
few seconds-minutes. Data is available from 01-2019 to 08-2020.

In short, we develop an algorithm that predicts the type and size (deadweight tonnage) of a vessel
based on its dimensions. Using the vessel size and information on draft differences when entering
and leaving a port, we can estimate the resulting trade flow (either import or export). We validate
this data for five countries that report port-level trade flows (United States, United Kingdom, New
Zealand, Brazil and Japan). Additionally, using the classification of the vessel type and the estimated
amount that is loaded and unloaded, we create an conversion table that assigns trade to specific
sectors based on the vessel type. Combining both levels of information allows us to estimate the
volume and value of maritime trade flows on a port, sector and country level. We further validate
these trade flows based on an external data source (UN Comtrade).

1.1 Data sources

In order to validate the port-level trade flows, and calibrate the vessel-sector conversion table, we
extract monthly port-level data for five countries. Official monthly import and export statistics for
the months January-December 2019 are collected from various sources: United States1, United
Kingdom2, Japan3, New Zealand4 and Brazil5. These countries are chosen as they are, to the best of
our knowledge, the only countries that report monthly port-level import and export values. We match
the ports in the respective trade data (ports for United States, United Kingdom and New Zealand,

1US Census: https://usatrade.census.gov
2UK Revenue and Customs: https://www.uktradeinfo.com
3Japan Ministry of Finance: https://www.customs.go.jp/toukei/info/tsdl e.htm
4New Zealand Statistics: http://nzdotstat.stats.govt.nz/wbos/Index.aspx?DataSetCode=TABLECODE7312
5Instituto de Pesquisa Econmica Aplicada: http://shiny.ipea.gov.br/comex/
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and Custom regions for Japan and Brazil) with the ports in out sample. In total, we have data for
67 ports in the United States, 30 ports in the United Kingdom, 60 ports in Japan, 15 ports in New
Zealand and 32 ports in Brazil. However, some remarks should be made. For Brazil and Japan,
not all commodities are included in the database, which will result in a likely overestimation of trade
flows based on the AIS data. For Japan, this mainly affects exports, as some heavy goods that would
contribute much to trade in terms of weight, such as vehicles and heavy machinery, are not included.
Moreover, for both Brazil and Japan, the trade flows are associated with custom regions, which are in
some cases difficult to match to the correct port (in particular Brazil). Therefore, we have the largest
confidence in the comparisons of ports in the United States, New Zealand and the United Kingdom.

1.2 Data preparation

We have manually mapped 1200 port areas across 180 countries to be included in our sub sample
of ports. Port areas include the berthing locations and navigation channel to the berths. These ports
include all major ports per country and hence cover almost the complete share of global maritime
trade as this is mainly concentrated in the large gateway ports. For instance, Trepte and Rice (2014)
reported that the largest 20 ports (out of more than 300 ports) in the United States account for more
than 80% of the cargo volume in each commodity class.

Using a vessel call algorithm, we extract vessel calls at ports and estimated the turnaround time
of vessels in ports. We have implemented several filtering criteria to extract only the port calls that
likely contribute to trade. First, we only focus on cargo and tanker vessels. Second, port calls with a
turnaround time of less than 5h and more than the 95th percentile (of the port) are truncated, as they
are most likely associated with refueling, repair or maintenance. Third, we truncate vessels calls that
have a turnaround time of less than 10h and leave the port area at a direction that is within 45 degree
of the direction of entering the port area. These port calls are most likely associated with vessels
passing a port (e.g. ports alongside a river). This filtering method results in around 3.2 million vessel
calls across ∼100,000 unique vessels.

1.3 Vessel size and type

To estimate the magnitude of trade, one need information on the carrying capacity of the vessels
and the type of vessel. AIS data includes information on the vessel length, width, draught, main
type (cargo or tanker) and the subtype (e.g. oil tanker, vehicle carrier, etc.). However, it does not
include data on the design draught and carrying capacity, or deadweight tonnage (DWT), of the
vessel. Moreover, many data gaps exist, in particular the draft of vessels and the subtype. Here,
we used an assimilation method that combines the AIS data and a detailed vessel database with a
set of Machine Learning (ML) algorithms to fill in the gaps in the data and estimate the subtype and
DWT of the majority of vessels in our sample. The detailed vessel database used here was obtained
from a commercial provider (Fleetmon) and includes vessel information for around 38,000 cargo and
tanker vessels. First, we predict the DWT of vessels based on vessels dimensions (length, width,
draft). Information on the vessel dimensions is assimilated from both data sources. Dimensions
included in the vessel database are seen as superior to the AIS data and in case both sources
provide data, the vessel database data is taken. To estimate the design draft of the vessel, we search
for the maximum draft reported for these vessels within the time frame. We use this design draft in
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case the vessel it not included in the vessel database. For data that did not report draft information,
we use a RandomForestRegressor algorithm with 500 estimators (robust to changes) to estimate
the design draft based on the length and width of a vessel (R2 = 0.97). Then, we use another
RandomForestRegressor algorithm (500 estimators) to estimate the DWT of a vessel based on the
vessel dimensions. A RandomForestRegressor is used because it is known that vessel dimensions
and DWT have a non-linear relationship (e.g. DTU, 2013). We first split the data between cargo and
tanker vessels, as their underlying relationship between dimensions and DWT may differ. We use the
vessels included in the vessel database to fit and test the model. Both models have an almost perfect
fit (R2 is 0.99 for both tanker and cargo vessels). The underlying relationship is well captured and the
ML algorithm was also able to correct cases of misreporting of the vessel draft in the AIS data (since
these are put in manually).

Second, based on the assimilated dataset, we can predict the vessel subtype for those vessels
that have no reported subtype. The AIS data includes information on 94 different subtypes. However,
not all of these types transport goods. Therefore, we re-group the 94 subtypes into 22 groups of
vessel types (see Appendix A for a table) and one group that contains vessel types to be removed
(49 vessel subtypes). We now use a RandomForestClassifier algorithm, again using standard config-
uration, to classify the vessel types based on their dimensions and DWT (again split between cargo
and tanker vessels). The prediction rate for cargo vessels equals 90% and for tankers equals 79%,
which could be attributed to the limited sample size of tanker vessels (9,651 for tanker versus 21,793
for cargo).

Using both algorithms, we now have a validated dataset with 66,331 unique vessels including
their dimensions, carrying capacity and subtype. At last, based on the vessel subtype and DWT,
we add the block coefficient of vessels to the database. The block coefficient is ratio of volume
displacement of the vessel compared to a rectangular block with the same dimensions (DHI, 2018)
and is a important characteristic of the hull of a vessel. We use the block coefficient to predict
the payload (or vessel utilization rate) of the vessel based on the reported draft of a vessel (next
subsection). Block coefficients for four vessel types (bulk, container, tanker and LNG) and multiple
DWT indicators per type are obtained from DHI (2018) and added to the vessel types based on the
closest match of DWT per subtype.

1.4 Trade estimate

We use the aforementioned vessel characteristics to estimate the trade flows. To start, some filtering
criteria are applied. First, we remove vessels that have a vessel type that does not contribute to
trade (not within the 22 categories). Second, for the ports that handle containers, we add a tran-
shipment ratio which will reduce the potentially imported and exported goods that are transported
using container vessels (based on data for 70 major transhipment ports). Transhipment covers all
goods that are offloaded at a port and then loaded onto another vessel without going through cus-
toms. Transhipment accounts for around 28% of global container port throughput with some ports
such Singapore, Algeciras (Spain) and Marsaxlokk (Malta) having very high transhipment rates (Not-
teboom et al., 2019). Excluding transhipments would overestimate trade flows in ports with high
transhipment rates. Third, we remove domestic trade flows, as they do not contribute to international
trade. We create port-to-port bilateral trade flows based on the port calls. Based on this, we remove
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all vessels that travel between ports within the same country and have not visited another country,
except for vessels that are classified as container vessels. The latter is to avoid filtering out important
trade flows associated with hub and spoke networks of container flows, which represent container
vessels that arrive in large hubs, after which containers are moved onto smaller feeder vessels that
serve the smaller and more distant ports (Ducruet and Zaidi, 2012, Kavirathna et al., 2018). Fourth,
we derive the likely payload (utilisation rate) of the vessel, given that vessels are usually not fully
loaded (and it also physically not possible given the weight of crews, fuel, freshwater and supplies).
We use the dimensions (length: L, width: W , design draft: dd), DWT (DWT ), block coefficient (Cb)
and reported draft (dr) when entering and leaving a port (for those ports and vessels that have that
information) to estimate the payload (µv). The block coefficient at reported draft (Cbr) equals:

Cbr = 1−
(
(1− Cbd)

dr
dd

1/3)
(1)

after which the µv can be estimated using:

µv =
(Cbrdr − Cbddd)LWρw +DWT

DWT
(2)

with ρw the density in salt water (1029 kg/m3). For those port calls where draft level is not reported, or
where draft when entering and leaving the port is not changing (for which it is unclear whether drafts
have been reported or not), we try to backpropagate the draft information by looking at the incoming
draft at the next port of call. In case this information is not available, we assign the port-average
ingoing and outgoing payload. This payload estimate is of particular importance for ports with large
trade imbalance that either have partially full vessels leaving or entering, or have a substantial share
of empty containers being carried by container vessels. Lastly, vessels are never completely empty,
as they carry ballast water for stability purposes (Jia et al., 2019). Therefore, we assume that if the
payload was below 60% when entering and above 60% when leaving when loading (or vice versa
when unloading), the vessel can be assumed empty when entering (leaving).

The largest challenge in estimating trade flows is approximating what percentage of the vessel
capacity entering will contribute to import and how many goods were exported on the vessel leaving.
AIS data does not provide information to what extent cargo was loaded or unloaded when it calls at
a port. In the majority of cases, vessels either load or unload goods. Therefore, we estimate the
trade flows based on the net unloading (imports) or loading (exports) of vessels, which is estimated
based on the draft differences when entering and leaving the port. Estimating trade flows based on
the net loading or unloading is also used in previous work (Arslanalp et al., 2019, Cerdeiro et al.,
2020). In case there is no difference between the ingoing and outgoing draft (as this is not manually
put in), we estimate the ratio of unloading (fraction exports) and loading (fraction imports) based on
the imbalance measured at the port. The fraction of imports is found by calculating the net imports
over the total trade, for all port calls that do report draft differences:

frI =

∑
µv,in ∗DWTin∑

(µv,in ∗DWTin + µv,out ∗DWTout)
(3)

Similar for exports:

frE =

∑
µv,out ∗DWTin∑

(µv,in ∗DWTin + µv,out ∗DWTout)
(4)
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In short, we can write:

Import =


frI ∗DWTin, if din − dout = 0

µv,in ∗DWTin − µv,out ∗DWTout, if din − dout > 0

0, if din − dout < 0

(5)

Export =


frE ∗DWTout, if din − dout = 0

µv,out ∗DWTout − µv,in ∗DWTin, if dout − din > 0

0, if dout − din < 0

(6)

Using this methodology when can partly correct for trade flows in ports with large trade imbalances,
as vessels in these ports will be predominantly loaded or unloaded. The accuracy of the method
depends on the level of draft reporting in ports, which varies strongly globally. In particular, many
Caribbean, Latin American, Northern African, and South-East Asian countries have low draught re-
porting values. Hence, we expect an error term that is consistent within countries, but varies between
countries.

1.5 Sector-level trade and conversion from volume to value

In order to link these imports and exports to economic sectors, we establish a conversion table that
describes the probability that a certain vessel types is associated with a particular economic sector.
In this way, the goods imported and exported per vessel type can be disaggregated to economic
sectors. We extract commodity-level import and export data per country, which are converted to a
coherent classification system6. We use the 56 economic sector classification system as used in
the World Input-Output Tables (see Dietzenbacher et al., 2013), which is based on the ’International
Standard Industrial Classification of All Economic Activities’ (ISIC). From these 56, we only focus on
the first 22 sectors, as these sectors include the majority of commodities that are expected to be
transported by maritime transport (Appendix B).

We match the data for the ports and months with the AIS data and end up with two matrices:
one that represent the import and export per port for every given month and economic sector, and
one that includes AIS-derived import and export disaggregated to vessel types per month. The
resulting conversion table needs to be a nxm matrix with n the number of economic sectors and m

the number of vessel types. We first normalise both matrices per row, which makes it easier to solve.
We decide to make the conversion table only based on data for the United Kingdom, New Zealand,
United Kingdom and Japanese imports, given the highest expected accuracy. We end up with a X
x 21 matrix (A) with AIS derived trade flows per vessel type and a X x 22 matrix (B) with official
trade flows. We solve this by defining a minimization problem using linear programming. We add two
constraints to the solution: all elements in the solution are larger or equal than 0, and the sum per row
is equal to 1. The latter is to ensure that the cargo load that enters or leaves a port is fully distributed
over the associated economic sectors. For instance, if a vessel with type X enters a ports, its cargo
load is distributed 20% into sector A, 30% into sector B, 15% into sector C, and 35% into sector D. In
matrix form, this reads:

6The conversion tables for the classification systems are taken from https://unstats.un.org/unsd/classifications/Econ
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min |AX − B|2

s.t. X(n,m) ≥ 0∑
i∈n

X(i,m) = 1

(7)

Using this conversion table, we can translate the AIS derived imports and exports per vessel
types to imports and exports per economic sector, which can be compared to the custom data. The
conversion table fitted is however partially a characterisation of the countries the data is calibrated
to. Therefore, we add a correction factor that compares the sector presence in the country of interest
to the calibration countries. For instance, it could be that bulk carriers transport grains in agriculture
exporting countries, whereas they carry iron ore in mining heavy countries. This correction factor is
based on volume imports and exports per HS6 code on a national level derived from 2018 trade data
from the BACI database (Gaulier and Zignago, 2010), which we translate from the HS6 classification
to the economic sectors used in this study. It can be seen as a ratio of the sector distribution per
trade flow (ratios,i = %s,i/%s,base) with s the sector, i the country of interest and base the data used
for deriving the conversation table.

Additionally, we create a conversion table to translate volume into value, as different sectors have
vastly different values of imported and exported goods. To do this, we create a country-specific and
sector-specific conversion table that translates sector-specific volume to value (for both import and
export). Both conversion tables are constructed using the BACI trade database (Gaulier and Zignago,
2010). We assume that the conversion values for maritime trade is similar as the conversion values
for all modes of transport. We end up with sector-specific trade flows on a port-level.

We further aggregate the sector-level data to a 11-sector classification, which will improve the
accuracy of the sector estimates. These 11 sectors are included in the Appendix C.

2 Validation

We perform a number of validations: (1) monthly port-level trade flows per country, (2) a sector-level
validation on a country-level, and (3) an external validation based on UN Comtrade data for the coun-
tries that report maritime trade flows.

2.1 Port-level validation

S1 Figure 1 compares the monthly trade flows estimated using the AIS with the customs data per
country. A good agreement is found for all countries. Some observations can be made. First, an
overprediction is found in case a country has a large trade imbalance. For instance, the United
Kingdom imports 4.3 times more in terms of volume than it exports, hence an overestimation is found
for exports. This is because the method cannot correct enough for the large imbalance that exist at a
port-level. A similar observation can be made for Brazil, exporting 5.9 times more in terms of volume
than it imports, resulting in an overall overprediction for imports. For Japan, the exports are largely
overpredicted, but we hypothesize that this can be attributed to the missing exports in the custom
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S1 Figure 1: Comparison observed and predicted trade flows on a port level for the US, UK, Japan,
New Zealand and Brazil. Note that all estimates are log10 estimates.

data (commodities that do not have a volume-based unit such as vehicles). Second, the prediction
for small ports is generally less accurate than the larger ports, which can be observed in the US,
the United Kingdom and Brazil. Smaller ports are in general less diversified (Ducruet et al., 2010,
2015), therefore serving only a few specialised industries. Such specialised industries, such as raw
materials, usually have a large trade imbalance (e.g. export-orientated for raw materials for export
countries and import-orientated for import countries), making it hard to predict trade.

On a port-level, the correlation coefficient ranges from 0.52-0.96, and R2 values are in the order of
0.32-0.85 (except for Japanese exports). Moreover, we compare the monthly average (aggregated)
imports and exports on a country-level. Most trade flows are within a 40% deviation, with only Japan
exports having a larger overprediction (4 times), due to the issues with the customs data. Trade flows
for the United States are underpredicted, whereas trade flows for United Kingdom (both imports and
exports), New Zealand imports and Brazil imports are well-captured.

2.2 Sector-level validation

We also validate the aggregated trade flows per sector per country. The result are shown in S1 Figure
2, showing considerable improvement over the port-level estimates. For this comparison, the corre-
lation coefficients vary between 0.79-0.98 and R2 values between 0.39-0.89. On a national level,
the overprediction of sector-specific trade flows in small ports become negligible, indicating that this
method works well on a national scale.
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S1 Figure 2: Comparison observed and predicted sector-level trade flows on a country level for the
US, UK, Japan, New Zealand and Brazil. Note that all estimates are log10 estimates.

2.3 External validation UN Comtrade

As external validation, we collect monthly mode of transport data from the UN Comtrade database
(https://comtrade.un.org) (Jan 2019 - December 2019), which now allows countries to include mode
of transport when reporting trade. For 2019, we find 28 countries reporting maritime imports and 27
reporting maritime exports and compare the maritime trade flows in terms of value for these countries.
We compare both the aggregate monthly values on a country-level (top S1 Figure 3) as well as the
sector-specific trade flows (bottom S1 Figure 3).

The aggregate trade flows (top S1 Figure 3) show a very good fit for most countries. Smaller
trade flows are harder to predict, most likely due to a lower coverage of draft reporting (as smaller
maritime trade flows are more common in low-income countries with lower reporting frequency) and
potentially large trade imbalances (e.g. small islands). The correlations coefficients for imports and
exports are 0.84 and 0.86, respectively. Moreover, the sector-specific data shows a similar pattern as
observed above, with smaller trade flows and smaller sectors having a larger errors than larger trade
flows of more dominant sector. The correlation coefficients are found to be 0.78 for imports and 0.73
for exports.
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S1 Figure 3: Comparison observed and predicted maritime trade flows on a country level for 28/27
countries reporting mode of transport data for imports/exports. Top left figure: monthly maritime
imports on a country-level. Top right figure: monthly maritime exports on a country-level. Bottom left
figure: monthly maritime imports on a sector and country-level. Bottom right figure: monthly maritime
exports on a sector and country-level. Note that all estimates are log10 estimates.
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Appendix A: Vessel types

Group Vessel types

Bitumen Tanker Bitumen Tanker, Asphalt Bitumen Tanker

Cement Carrier Cement Carrier, Aggregates Carrier, Aggregates Carrier, Limestone Carrier, Powder Carrier

Chemical Products Chemical Oil Products Tanker, Caprolactam Tanker, Urea Carrier

Chemical Tanker Chemical Tanker

Coal Oil Mixture Tanker Coal Oil Mixture Tanker

Container Container Ship, Barge Carrier, Container Ro Ro Cargo Ship

Dry Bulk Bulk Carrier, Self Discharging Bulk Carrier, Bulk Oil Carrier

Forest Wood Chips Carrier

General Cargo General Cargo Ship, Trans Shipment Vessel, Deck Cargo Ship, Palletized Cargo Ship
Heavy Load Carrier, Passenger General Cargo Ship

Animal products Livestock Carrier, Live Fish Carrier, Fish Carrier, Fish Factory Ship

LPG/LNG Lpg Tanker, Lng Tanker, Fsru, Combination Gas Tanker Lng Lpg, Co2 Tanker, Fpso

Molasses Tanker Molasses Tanker

Oil And Chemical Tanker Oil And Chemical Tanker

Oil Products Oil Products Tanker

Oil Tanker Tank Barge, Crude Oil Tanker

Ore Carrier Ore Carrier, Ore Oil Carrier

Other Tanker Other Tanker

Reefer Refrigerated Cargo Ship, Fruit Juice Tanker

Refined Sugar Carrier Refined Sugar Carrier

Ro Ro Cargo Ship Ro Ro Cargo Ship

Vegetable Oil Tanker Vegetable Oil Tanker, Edible Oil Tanker

Vehicles Carrier Vehicles Carrier

Vessel types to be removed Yacht, Patrol Vessel, Tug, Service Ship, Pusher Tug, Passenger Ship, Offshore Tug Supply Ship
Sailing Vessel, Dredger, Research Vessel, Hopper Dredger, Work Repair Vessel, Split Hopper Barge
Fishing Vessel, Offshore Vessel, Crewboat, Buoy Lighthouse Vessel, Hopper Barge, Cable Layer
Offshore Support Vessel, Bunkering Tanker, Fishing Support Vessel, Pipe Layer, Drilling Ship, Pilot Vessel
Offshore Supply Ship, Pollution Control Vessel, Offshore Supply Ship, Salvage Ship, Cruise Ship
Crane Ship, Water Tanker, Waste Disposal Vessel, Utility Vessel, Landing Craft, Well Stimulation Vessel
Search And Rescue Vessel, Standby Safety Vessel, Training Ship, Offshore Processing Ship, Passenger Ro Ro Cargo Ship

S1 Table 1: Overview of the vessel groups and the vessel subcategories that are included per group.
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Appendix B: sectors for conversion

Sector number Description

1 Crop and animal production, hunting and related service activities
2 Forestry and logging
3 Fishing and aquaculture
4 Mining and quarrying
5 Manufacture of food products, beverages and tobacco products
6 Manufacture of textiles, wearing apparel and leather products
7 Manufacture of wood and of products of wood and cork, except furniture; manufacture of articles of straw and plaiting materials
8 Manufacture of paper and paper products
9 Printing and reproduction of recorded media
10 Manufacture of coke and refined petroleum products
11 Manufacture of chemicals and chemical products
12 Manufacture of basic pharmaceutical products and pharmaceutical preparations
13 Manufacture of rubber and plastic products
14 Manufacture of other non-metallic mineral products
15 Manufacture of basic metals
16 Manufacture of fabricated metal products, except machinery and equipment
17 Manufacture of computer, electronic and optical products
18 Manufacture of electrical equipment
19 Manufacture of machinery and equipment n.e.c.
20 Manufacture of motor vehicles, trailers and semi-trailers
21 Manufacture of other transport equipment
22 Manufacture of furniture; other manufacturing

S1 Table 2: Overview of economic sectors in accordance with the World Input-Output Tables (Diet-
zenbacher et al., 2013).
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Appendix C: final sector classification

Sector number Description

1 Agriculture
2 Fishing
3 Mining and Quarrying
4 Food & Beverages
5 Textiles and Wearing Apparel
6 Wood and Paper
7 Petroleum, Chemical and Non-Metallic Mineral Products
8 Metal Products
9 Electrical and Machinery

10 Transport Equipment
11 Other Manufacturing

S1 Table 3: Overview of economic sectors used in this work.
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